Помощь
Добавить в избранное
Музыка Dj Mixes Альбомы Видеоклипы Топ Радио Радиостанции Видео приколы Flash-игры
Музыка пользователей Моя музыка Личный кабинет Моя страница Поиск Пользователи Форум Форум

   Сообщения за день
Вернуться   Bisound.com - Музыкальный портал > Программы, музыкальный soft

Ответ
 
Опции темы
  #1  
Старый 08.11.2024, 23:06
hopaxom869@amxyy.com hopaxom869@amxyy.com вне форума
Постоянный пользователь
 
Регистрация: 25.08.2024
Сообщений: 7,320
По умолчанию Introduction to Reinforcement Learning (RL)


Introduction to Reinforcement Learning (RL)
Published 11/2024
Created by Maxime Vandegar
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 37 Lectures ( 7h 26m ) | Size: 4.12 GB

Deep Reinforcement Learning in PyTorch: From Fundamentals to Advanced Algorithms

What you'll learn
Core Concepts of Reinforcement Learning
Implementing RL Algorithms in PyTorch
Building Agents to Play Atari Games
Exploring Policy-Based and Value-Based Methods
Mastering Exploration vs. Exploitation

Requirements
Basic Machine Learning Knowledge

Description
Unlock the world of Deep Reinforcement Learning (RL) with this comprehensive, hands-on course designed for beginners and enthusiasts eager to master RL techniques in PyTorch. Starting with no prerequisites, we'll dive into foundational concepts-covering the essentials like value functions, action-value functions, and the Bellman equation-to ensure a solid theoretical base.From there, we'll guide you through the most influential breakthroughs in RL:Playing Atari with Deep Reinforcement Learning - Discover how RL agents learn to master classic Atari games and understand the pioneering concepts behind the first wave of deep Q-learning.Human-level Control Through Deep Reinforcement Learning - Take a closer look at how Deep Q-Networks (DQNs) raised the bar, achieving human-like performance and reshaping the field of RL.Asynchronous Methods for Deep Reinforcement Learning - Explore Asynchronous Advantage Actor-Critic (A3C) methods that improved both stability and performance in RL, allowing agents to learn faster and more effectively.Proximal Policy Optimization (PPO) Algorithms - Master PPO, one of the most powerful and efficient algorithms used widely in cutting-edge RL research and applications.This course is rich in hands-on coding sessions, where you'll implement each algorithm from scratch using PyTorch. By the end, you'll have a portfolio of projects and a thorough understanding of both the theory and practice of deep RL.Who This Course is For:Ideal for learners interested in machine learning and AI, as well as professionals looking to add reinforcement learning with PyTorch to their skillset, this course ensures you gain the expertise needed to develop intelligent agents for real-world applications.

Who this course is for
AI Researchers and Academics
Game Developers and Simulation Engineers
Graduate Students in AI and Machine Learning
Data Scientists and ML Engineers
Beginner Machine Learning Enthusiasts
Software Developers Exploring AI
Homepage

Ответить с цитированием
Ответ



Ваши права в разделе
Вы не можете создавать темы
Вы не можете отвечать на сообщения
Вы не можете прикреплять файлы
Вы не можете редактировать сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Музыка Dj mixes Альбомы Видеоклипы Каталог файлов Радио Видео приколы Flash-игры
Все права защищены © 2007-2024 Bisound.com Rambler's Top100